

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

The Enrichment of Low-Grade Mazidagi Phosphates by Calcination and Extraction Methods

T. Gunduz^a; B. Gumgum^b

^a DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCES, UNIVERSITY OF ANKARA, ANKARA, TURKEY ^b DEPARTMENT OF CHEMISTRY FACULTY OF ARTS AND SCIENCES, UNIVERSITY OF DICLE, DIYARBAKIR, TURKEY

To cite this Article Gunduz, T. and Gumgum, B.(1987) 'The Enrichment of Low-Grade Mazidagi Phosphates by Calcination and Extraction Methods', *Separation Science and Technology*, 22: 6, 1645 — 1648

To link to this Article: DOI: 10.1080/01496398708058424

URL: <http://dx.doi.org/10.1080/01496398708058424>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

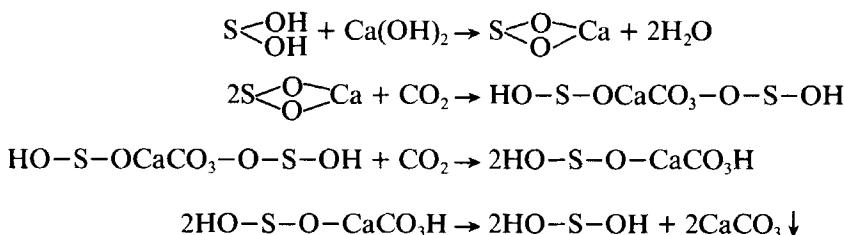
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

The Enrichment of Low-Grade Mazıdağı Phosphates by Calcination and Extraction Methods

T. GUNDUZ

DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCES
UNIVERSITY OF ANKARA
ANKARA, TURKEY


B. GUMGUM

DEPARTMENT OF CHEMISTRY
FACULTY OF ARTS AND SCIENCES
UNIVERSITY OF DICLE
DIYARBAKIR, TURKEY

INTRODUCTION

Only Mazıdağı phosphate are worthy of processing among the phosphate reserves in Turkey. The beneficiation problem of low-grade Mazıdağı phosphates has not been solved, although they constitute 260 million tons out of a total of 400 million tons of phosphate rocks in the region (1, 2). The method used for the beneficiation of calcerous phosphates is generally calcination at about 800-950°C followed by slating and removal of small particles. Application of this common process gives a highly concentrated end product. When this method is used on the phosphate rocks of Mazıdağı, it is not possible to obtain good quality products for industrial purposes. However, in some countries, to remove the excess amount of $\text{Ca}(\text{OH})_2$, solutions of NH_4Cl and NaCl are used (3, 4). These compounds increase the solubility of $\text{Ca}(\text{OH})_2$ about three times. If a solution of sugar is used instead of those solutions

mentioned above, it is possible to increase the solubility of $\text{Ca}(\text{OH})_2$ about a hundred times (5). By making use of this phenomenon, an excess amount of $\text{Ca}(\text{OH})_2$ in low-grade Mazıdağı phosphates can be extracted into the liquid phase according to the following chemical reactions (where $\text{S}(\text{OH})_2$ indicates sugar molecules):

Calcium ions which complex with sugar molecules are removed by precipitation in the form of calcium carbonate.

EXPERIMENTAL

Samples (50.0 g) of different sizes were calcined at temperatures between 850 and 950°C for different time periods. A Heraeuse model KR 170 furnace was used for all experiments. After each calcination all the samples were slaked by using the same amount of water, and then the excess amounts of $\text{Ca}(\text{OH})_2$ were extracted from the solid phase into the liquid phase by using sugar solutions. For the purpose of separation of small particles, we used a screen of 400 mesh. Concentrated minerals which had been washed and then dried were analyzed by using a Bausch & Lomb Spectronic 20 type spectrophotometer. It is necessary to use an excess of sugar solution when a calcined mineral is reacted directly with sugar solutions. In addition, an unsoluble by-product, tricalcium saccharide, was formed, and at the same time the amount of soluble $\text{Ca}(\text{OH})_2$ was decreased (5, 6). Therefore, products obtained after calcination were slaked by water and then washed. So, before application of sugar solutions to calcined materials, the concentration of P_2O_5 was increased to about 20%. Finally, by the application of sugar solutions, we obtained concentrated samples which contained over 30% P_2O_5 . In these studies, we used an Atago polarimeter to determination the amount of sugar.

RESULTS AND DISCUSSION

As can be seen in Tables 1 and 2, depending on particle size before calcination, time of calcination, temperature, and the methods of differentiation process after calcination, product concentrations were changed from 20 to 27 and 30 to 35% P_2O_5 , respectively.

When the sugar solutions used in the experiments settled down, then CO_2 gas was passed through the homogeneous solutions. Calcium ions connected to the sugar molecules are precipitated in the form of calcium carbonate. Through these processes we were able to obtain powder $CaCO_3$ as a by-product and the sugar solution was ready to use again for a new process. For the determination of sugar lost during the processes, we analyzed the amount of sugar at each step of the experiments. The results show there is an average loss of 0.5 g of sugar per 50 g of rocks (Table 3).

When minerals were calcined at about $870^{\circ}C$ for 1 h, the calcined products were slaked with water and the parts separated at 400 mesh. We

TABLE 1
The Results of Beneficiation with Water

Particle size (mm)	Calcination temperature ($^{\circ}C$)	Calcination time (h)	P_2O_5 (%)	Yield as P_2O_5 (%)
5	860-870	1	20.0	93.0
1	860-870	1	20.0	82.0
1	860-870	2	27.0	66.0
1	860-870	3.5	23.5	66.0
5	900-920	1	23.4	90.0
1	900-920	1	22.8	77.0

TABLE 2
The Results of Beneficiation with Sugar Solution

Particle size (mm)	Calcination temperature ($^{\circ}C$)	Calcination time (h)	P_2O_5 (%)	Yield as P_2O_5 (%)
5	860-870	1	35.0	—
5	870-880	1.5	34.5	78.0
1	870-880	1.5	35.3	64.0
1	860-870	2	34.7	55.0
5	860-870	2	34.0	67.5
0.149	860-870	1	32.3	—

TABLE 3
Loss of Sugar per 50 g of Phosphate Rocks

Before using, % sugar	After using, % sugar	Loss of sugar (g)
20.28	20.30	-0.02
25.84	25.22	0.62
25.84	25.79	0.05
29.12	28.30	0.82
30.06	29.23	0.83
30.06	29.48	0.58
30.06	29.65	0.41
30.06	29.40	0.66

were able to obtain products which were concentrated to about 20–22% P_2O_5 with a yield of 90–93%.

By increasing the calcination time from 1 to 1.5 h at 870°C and using a sugar solution, and after again removing the small particles, we were able to obtain products which were concentrated to about 34.5% P_2O_5 with a yield of 78%. We regenerated the solution obtained at the end of these processes by passing CO_2 gas through them and obtained powder $CaCO_3$ with a purity of 99.6%.

REFERENCES

1. R. P. Sheldon, "Exploration for Phosphorite in Turkey: A Case History," *Econ. Geol.*, 59 (1964).
2. The British Sulphur Corp. Ltd., "Calcined Phosphate Rock," *Phosphorus Potassium*, 41 (May/June 1969).
3. C. Ben-Ari and W. J. Fuchs, *Upgrading Calcareous Rock Phosphate*, Negev Phosphates Ltd., 1960.
4. E. R. Herman, *Upgrading of Phosphate Rock*, Chemicals and Phosphate Ltd., 1965.
5. R. E. Kirk and D. F. Othmer (eds.), *Encyclopedia of Chemical Technology*, Vol. 12, Wiley-Interscience, New York, 1967.
6. F. Schneider, *Şekerin Teknolojisi, Türkiye Şeker Fab. A.Ş.*, 168 (1971).

Received by editor September 16, 1986